Technical Program

Paper Detail

Paper Title Dual Loomis-Whitney inequalities via information theory
Paper IdentifierFR4.R5.4
Authors Jing Hao, Varun Jog, University of Wisconsin - Madison, United States
Session Information Theory and Statistics II
Location Saint Victor, Level 3
Session Time Friday, 12 July, 16:40 - 18:00
Presentation Time Friday, 12 July, 17:40 - 18:00
Manuscript  Click here to download the manuscript
Abstract We establish lower bounds on the volume and the surface area of a geometric body using the size of its slices along different directions. In the first part of the paper, we derive volume bounds for convex bodies using generalized subadditivity properties of entropy combined with entropy bounds for log-concave random variables. In the second part, we investigate a new notion of Fisher information which we call the $L_1$-Fisher information, and show that certain superadditivity properties of the $L_1$-Fisher information lead to lower bounds for the surface areas of polyconvex sets in terms of its slices.